

SYSTÈMES DE SERRAGES DYNAMOMÉTRIQUES

WWW.PLARAD.FR

ENTREPRISEQualité made in Germany

VISSEUSSES DYNAMOMÉTRIQUES À BATTERIE

DA2-Série
DA2*power*10
DA2*docu*12
DA2*control*13

VISSEUSSES DYNAMOMÉTRIQUES À BATTERIE

DA2 modèles spéciaux

DA2*safety*14

DA2*motion*16


CLÉS DYNAMOMÉTRIQUES HYDRAULIQUES

MX-EC	32
FSX	34
K-Série	36
I T-Série	37

POMPES HYDRAULIQUES

XE1-Série	38
XA1power	42
Dual XE1-Série	44
TXP1 <i>eco</i>	46
XP1 <i>eco</i>	.47
TVE1_Cário	10

TENDEURS HYDRAULIQUES

PSE		 52
PSD,	PST, PDQ	 53

VISSEUSES DYNAMOMÉTRIQUES ÉLECTRIQUES

VISSEUSES DYNAMOMÉTRIQUES PNEUMATIQUES

DP2-Série
DP2*power*24

ACCESSOIRES POUR VISSEUSES DYNAMOMÉTRIQUES

Bras de réaction
pour visseuses27
Système deporté28

MULTIPLICATEURS DE COUPLE

XVR 56 XVK57

ACCESSOIRES

Accessoires 58
Digital Solutions 59

SERVICE

Service clients	60
Plarad® Academy	60
Entretien et réparation	61
Service de location	61
Construction de	
machines enéciales	62

MASCHINENFABRIK WAGNER – SYSTÈMES DE SERRAGES DYNAMOMÉTRIQUES HAUT DE GAMME JUSQU'À 150.000 Nm

Depuis 1962, nous sommes un fabricant de solution de serrage dont l'histoire est riche en innovations et en produits fiables.

Avec un total de huit lignes de produits, du multiplicateur de couple manuel au système de serrage entièrement automatique, nous proposons une large gamme de produits.

Avec sa marque Plarad, Maschinenfabrik Wagner est synonyme de qualité, d'innovation et de fiabilité dans le domaine de la technologie du serrage jusqu'à 150.000 Nm. Nos outils vous offrent une solution adaptée à vos applications et Plarad apporte également l'ensemble des services liés à vos besoins.

La proximité avec les clients dans le monde entier et le savoir-faire dans le secteur industriel font de Maschinen-fabrik Wagner un expert en matière de technique de serrage et un partenaire solide lorsqu'il s'agit de trouver des solutions sur mesure.

Notre large gamme de services, en agence ou sur site, proposant formation, assistance, location, réparation, entretien, étalonnage, conseil, complète notre offre.

VARIANTES DE LA GAMME

VISSEUSES DYNAMOMÉTRIQUES À BATTERIE

CARACTÉRISTIQUES DE L'ÉQUIPEMENT EN UN COUP D'OEIL

Des produits Plarad pour tous les domaines d'application adaptés à votre mission

DA2power

L'OUTIL IDÉAL POUR UN TRAVAIL RAPIDE ET MOBILE

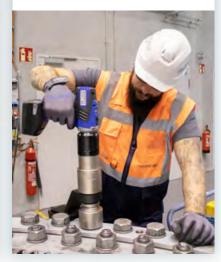
Notre visseuse au couple compacte, puissante et fiable, relève tous les défis et est évolutive vers les modèles docu et control.

- - 4 poistions de réglages pour une vitesse de travail optimale
- **ERGONOMIE** Poignée pivotante à 360°, sans effort et sans risque, verrouillage automatique lors du serrage.
- **CONTRÔLE DE L'ÉTAT DE LA BATTERIE** Surveillance proactive du couple et de

la batterie 5,2 Ah Li-lon High-Power

FIABLE

- ▶ Couple de desserrage plus puissant pour les vis difficiles
- ▶ Engrenage inoxydable grâce à la surface nickelée
- La technologie du moteur et de la batterie FEIN assure la qualité et la possibilité de s'approvisionner dans le monde entier.



BATTERIE & CHARGE

- ▶ 5,2 Ah Li-Ion haute puissance
- ▶ Chargement complet de la batterie en moins de 30 minutes grâce au High-Performance Charger
- Indicateur de charge de la batterie
- Le chargeur loT indique l'état de la batterie pour une planification plus fiable du travail

SÉCURITÉ

- ▶ Sécurité et ergonomie grâce au dégagement automatique du bras de réaction après le serrage
- Protection et confort d'utilisation grâce au verrouillage automatique en serrage ou en cas de blocage

POWER

Robuste et facile à utiliser Outillage de nouvelle génération.

DOCU

Caractéristiques de la version docu: Enregistrement et analyse des données de serrages

>>

CONTROL

Dispose du mode couple & angle et contrôle de rotation

>>

TRAÇABILITÉ, ANALYSES ET ENREGISTREMENT SANS FAILLE

Votre outil de documentation et d'analyse. En plus des nombreuses fonctions du DA2power, le DA2docu enregistre les résultats des serrages, y compris l'emplacement, et les envoie sur vos appareils via Wifi.

Enregistrement, configuration et paramétrage des opérations de serrage contrôlable via l'application.

COMPTEUR DE SERRAGE Compteur de vissage intégré en fonction du rapport et du couple

SÉCURITÉ DES PROCESSUS Gestion du serrage et vérouillage du couple

DA2DOCU-APP Application Android® avec documentation complète (horodatage, utilisateur, coordonnées GPS, jusqu'à 10.000 plans de mémoire) pour un suivi facile. (Tablette non comprise dans la livraison)

Mode couple / Angle de rotation

Angle de rotation-Mode de comptage

Tode angle de otation ode de contrôle

0

ocumentation

ompatible WLAN

Mode couple

UN CONTRÔLE PARFAIT GRÂCE AU MODE ANGLE DE ROTATION

La nouvelle visseuse sans fil DA2control permet de réaliser des serrages précis pour chaque application grâce à la fonction intégrée couple et angle ainsi qu'à la reconnaissance du sens de rotation. Le réglage des paramètres de serrage s'effectue directement sur l'appareil, ce qui garantit une adaptation flexible et rapide.

Grâce à l'utilisation intuitive et aux mises à jour OTA, votre appareil reste toujours à la pointe de la technologie pour une performance maximale et une fiabilité

Tous les paramètres de serrage importants en un coup d'oeil

UP-TO-DATE

Mises à jour des fonctionnalités à distance (OTA over-the-air)

COMBINE COUPLE & ANGLE

Fonction couple/angle de rotation

_

 Les paramètres de serrage peuvent être réglés directement sur l'appareil

⋖ ।

Détection du sens de rotation

DA2safety

L'EXPERT EN MATIÈRE DE SÉCURITÉ ET DE MANIPULATION

Le conscient de la sécurité - pour les missions exigeantes. Le DA2safety offre une sécurité maximale grâce à sa commande à deux mains. Avec une poignée supplémentaire pivotante pour un maniement confortable et une utilisation illimitée, même avec des gants.

Idéal pour les gauchers et les droitiers. Mise à niveau possible de tous les modèles DA2.

FLEXIBLE

Poignée supplémentaire pivotante et fixable

SAFETY START TRIGGER (SST)

Démarrage à double déclencheur (Bi-manuelle). L'appareil s'arrête automatiquement lorsque l'un des deux déclencheurs est désactivé

ISTIQUES

- Minimiser les risques de blessures
- Amélioration de la manipulation du transfert dans le cas de plusieurs cas de vissage
- Confort de maintien simplifié
- Grande facilité d'utilisation pour les gauchers et les droitiers
- Adapté à vos chantiers utilisation possible sans restriction avec des gants
- Utilisation confortable grâce à une poignée supplémentaire
- ▶ Les modèles DA2-05 à DA2-36 peuvent être mis à niveau vers le DA2safety 2.0 et les modèles DA2-48 et DA2-80 vers le DA2safety 1.1.

DA2

Туре	Couple de re	e de rotation max. L		L1		1	ŀ	11	Vitesse de rotation max	Po	Poids*		
	Nm	ft-lbs	mm	inch	mm	inch	mm	inch	U/min rpm	kg	lbs	inch	
DA2-05	550	410	365	14.4	68,5	2.70	253	10.0	71,6	5,3	11.7	3/4"	
DA2-10	1.000	740	365	14.4	68,5	2.70	253	10.0	48,0	5,3	11.7	3/4"	
DA2-20	2.000	1,480	405	15.9	80,0	3.15	253	10.0	24,6	6,8	15.0	1"	
DA2-30	3.000	2,210	405	15.9	80,0	3.15	253	10.0	20,9	6,8	15.0	1"	
DA2-36	3.600	2,660	405	15.9	80,0	3.15	253	10.0	15,3	6,8	15.0	1"	
DA2-48	4.800	3,540	437	17.2	86,0	3.39	253	10.0	12,9	7,8	15.0	1 1/2"	
DA2-80	8.000	5,900	521	20.5	101,0	3.98	253	10.0	5,7	12,5	27.6	1 1/2"	

DONNÉES ET MODÈLES

DA2 VERSION ANGULAIRE

Туре	Couple de re	otation max.	L1		ŀ	11	Н	12	D)1	Vitesse de rotation max.	Poids*		Carré
	Nm	ft-lbs	mm	inch	mm	inch	mm	inch	mm	inch	U/min rpm	kg	lbs	inch
DA2-05-W	550	410	305,25	14.4	253	10.0	245,0	9.65	68,5	2.70	71,6	6,2	13.7	3/4"
DA2-10-W	1.000	740	305,25	14.4	253	10.0	245,0	9.65	68,5	2.70	48,0	6,2	13.7	3/4"
DA2-20-W	2.000	1,480	311,00	15.9	253	10.0	285,0	11.22	80,0	3.15	24,6	7,8	17.2	1"
DA2-30-W	3.000	2,210	311,00	15.9	253	10.0	285,0	11.22	80,0	3.15	20,9	7,8	17.2	1"
DA2-36-W	3.600	2,660	311,00	15.9	253	10.0	285,0	11.22	80,0	3.15	15,3	7,8	17.2	1"
DA2-48-W	4.800	3,540	314,00	17.2	253	10.0	316,5	12.44	86,0	3.39	12,9	9,5	20.9	1 1/2"
DA2-80-W	8.000	5,900	321,50	20.5	253	10.0	400,5	15.77	101,0	3.98	5,7	13,5	29.8	1 1/2"

DA2 SAFETY

Type	ı	.2	ŀ	11	D1			
	mm	inch	mm	inch	mm	inch		
DA2-05-SST 2.0	343	13.50	344	13.54	68,5	2.70		
DA2-10-SST 2.0	343	13.50	344	13.54	68,5	2.70		
DA2-20-SST 2.0	343	13.50	344	13.54	80,0	3.15		
DA2-30-SST 2.0	343	13.50	344	13.54	80,0	3.15		
DA2-36-SST 2.0	343	13.50	344	13.54	80,0	3.15		
DA2-48-SST 1.1	sur dem	ande						
DA2-80-SST 1.1	sur dem	ande						

Précision de répétition : ≤ 4%, en fonction du cas de vissage. Données techniques sans garantie. *Spécification sans bras de réaction et batterie. Poids de la batterie : 0,75 kg

DA2motion

LA VISSEUSE A BATTERIE POUR PLUS D'APPLICATIONS

Dans le secteur de l'eau ou de l'énergie, dans les transports ou dans l'industrie chimique, la DA2*motion* garantit un travail rapide et sûr.

La vitesse de sortie élevée du DA2*motion* vous permet d'obtenir des résultats rapides grâce à la boîte de vitesses à 4 rapports. Un verrouillage entièrement automatique breveté et le compteur numérique garantissent précision et sécurité.

Avec un tampon de butée sur le bras de réaction et la fonction "smooth start and stop", un mode de travail en douceur et silencieux est garanti. Idéal pour tous les secteurs grâce à des accessoires parfaitement adaptés et à une grande mobilité.

1 FL

FLEXIBLE
Deux versions, 550 Nm

ou 1000 Nm

2 RA

RAPIDE

Vitesse de rotation élevée

Valise rigide, Classe de protection IP 67

3

ERGONOMIE

Poignée pivotante à 360°, sans effort et sans risque, verrouillage automatique lors du serrage.

4

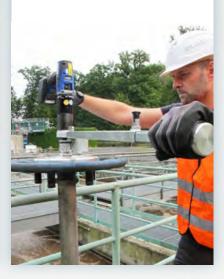
PARFAITEMENT ADAPTÉ

Bras de réaction télescopique avec compteur numérique de rotations

VOS AVANTAGES

ERGONOMIE

- ▶ Travail sans vibrations et sans bruit grâce à un entraînement fin sans balais
- ▶ Bras de réaction avec butée tampon: les surfaces sensibles à la pression sont ménagées



PUISSANCE

- Système breveté de verrouillage entièrement automatique. Verrouillage de la poignée pivotante : évite les coups sur les poignets ou les bras, pas de chocs de la visseuse
- ▶ Plusieurs choix d'accessoires adapté pour chacune de vos applications grâce à-de nombreux kits d'extension
- Travail rapide grâce à la boîte de vitesse à 4 rapports

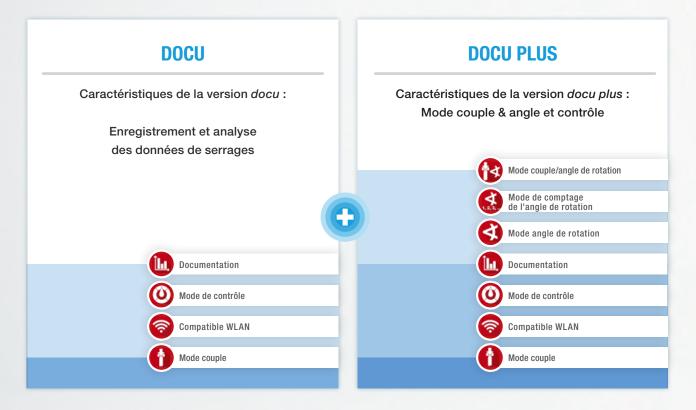
SÉCURITÉ

- Démarrage et freinage en douceur - pas d'endommagement des surfaces
- ▶ Compteur numérique à haute résolution

DONNÉES // MODÈLES

Туре	Coup		ı	.1	Н	11	Vitesse de rotation max.	Po	Carré	
	Nm	ft-lbs	mm	inch	mm	inch	U/min rpm	kg	lbs	inch
DA2-05motion	550	410	395	15.55	253	9.96	11,1	5,1	11.2	3/4"
DA2-10motion	1.000	740	395	15.55	253	9.96	6,8	5,9	13.0	3/4"

Données techniques sans garantie. *Données sans bras de réaction ni batterie. Poids de la batterie : 0,75 kg



VARIANTES DE LA GAMME

VISSEUSE ÉLECTRIQUE

CARACTÉRISTIQUES DE L'ÉQUIPEMENT EN UN COUP D'OEIL

Des produits Plarad pour tous les domaines d'application – adaptés à votre mission

INTELLIGENTE GRÂCE À DES ARGUMENTS CONVAINCANTS

L'outil - pour les applications exigeantes jusqu'à 8.000 Nm. La compensation des variations de tension et des changements de température permet d'obtenir une grande précision du couple.

La DE1*docu* commute automatiquement sur la fréquence du réseau disponible (par ex. 50 Hz ou 60 Hz). Inviolable grâce à la fonction de signature et à la commande intelligente du moteur à démarrage progressif.

PRÉCISION

- La DE1docu dispose de méthodes de serrage à couple contrôlé
- Une plus grande répétabilité est obtenue grâce à une commande de moteur ultramoderne

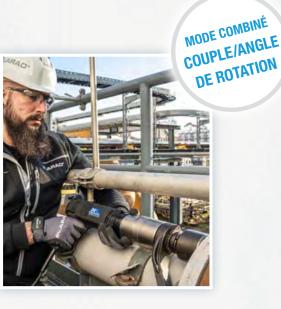
SÉCURITÉ

- La température du moteur est surveillée. En cas de surchauffe, le moteur s'arrête automatiquement
- La technologie à faible vibration permet de ménager les muscles et les articulations

AFFICHAGE

- Réglage simple et rapide des paramètres de serrage, à l'aide des touches de l'écran
- Protection d'écran en silicone incluse

0



DE1docu plus

TOUTES LES FONCTIONNALITÉS

La DE1control est une référence en matière de précision et de polyvalence : Le logiciel innovant permet des fonctionnalités supplémentaires dans le domaine des différents procédés de serrages.

Le mode couple/angle de rotation (procédé combiné), peut être exécuté en une seule étape. En alternative, le couple d'assemblage et l'angle de rotation peuvent être appliqués indépendamment.

CARACTÉRISTIQUES

- Menu de commande intuitif
- Les valeurs de la tension du réseau, de la fréquence du réseau et de la température du moteur mesurées sont visibles sur l'écran
- Documentation complète de vos résultats de serrages via WLAN sur terminaux mobiles
- ▶ Également disponible en version angulaire
- Nombreuses fonctions supplémentaires dans le menu guidé par des icônes (par exemple : verrouillage des touches, blocage de certains niveaux de réglage et mode de déblocage)
- ▶ Poignée pivotante sur 360°
- Mémoire pour 50 cas de serrages programmables

DE1 docu plus

MODE COUPLE

- Le parametrage du couple est réglable via les touches correspondantes
- ▶ Couple réglé (selon le tableau conversion) peut être affiché en option

MODE ANGLE

- Possibilité de limiter le couple maximal (protection de l'outil, protection du serrage contre le dépassement du couple)
- ▶ Réglage du couple d'assemblage en 100 niveaux de réglage selon le tableau de conversion (00 à 99)
- Réglage en continu de l'angle de rotation 0 à 999°.

MODE COUPLE & ANGLE

- ▶ Réglage du couple d'assemblage en 100 niveaux de réglage selon le tableau de convertion (00 à 99)
- ▶ Réglage de l'angle de rotation 0 à 999°.

ANGLE DE ROTATION MODE DE CONTRÔLE

- L'arrêt de la visseuse est commandé par le couple de serrage.
- L'angle de rotation est contrôlé à partir du couple minimum (niveau 00) de la visseuse pour assurer une surveillance du serrage

MODE DE CONTRÔLE

Vérification des vis pré-serrées sans serrage

DONNÉES ET MODÈLES

DE1

Туре	Type Couple de rotation max.					l1	D	1	Vites: rotatio		Poi	Carre	
	Nm	ft-lbs	mm	inch	mm	inch	mm	inch	U/min	rpm	kg	lbs	inch
	IVIII	11-102		IIIGII		IIIGII	111111	IIIGII	110 V	230 V	ĸy	ınə	IIIGII
DE1-10	1.000	740	425	16.73	195	7.68	68,5	2.70	9,0	12,0	5,9	13.0	3/4"
DE1-20	2.000	1,480	449	17.68	195	7.68	80,0	3.15	5,9	8,0	7,0	15.4	1"
DE1-30	3.000	2,210	465	18.31	195	7.68	80,0	3.15	4,5	5,2	7,2	15.9	1"
DE1-36	3.600	2,660	465	18.31	195	7.68	80,0	3.15	3,5	4,6	7,2	15.9	1"
DE1-48	4.800	3,540	497	19.57	195	7.68	86,0	3.39	2,0	2,5	9,1	20.1	1 1/2
DE1-80	8.000	5,900	565	22.24	195	7.68	101,0	3.98	0,7	0,7	13,2	29.1	1 1/2"

DE1 VERSION ANGULAIRE

Туре	Couple de ma		1	L1	Н	11	Н	12	D)1	Vitesse de rotation max.		Poids*		Carré
											U/mir	rpm			
	Nm	ft-lbs	mm	inch	mm	inch	mm	inch	mm	inch	110 V	230 V	kg	lbs	inch
DE1-10-W	1.000	740	342	13.46	195	7.68	253,0	9.96	68,5	2.70	9,0	12,0	7,1	15,6	3/4"
DE1-20-W	2.000	1,480	342	13.46	195	7.68	277,5	10.92	80,0	3.15	5,9	8,0	8,3	18.3	1"
DE1-30-W	3.000	2,210	342	13.46	195	7.68	293,5	11.55	80,0	3.15	4,5	5,2	8,6	18.9	1"
DE1-36-W	3.600	2,660	342	13.46	195	7.68	293,5	11.55	80,0	3.15	3,5	4,6	8,6	18.9	1"
DE1-48-W	4.800	3,540	342	13.46	195	7.68	326,0	12.83	86,0	3.39	2,0	2,5	10,2	22.5	1 1/2"
DE1-80-W	8.000	5,900	342	13.46	195	7.68	393,0	15.47	101,0	3.98	0,7	0,7	14,5	31.9	1 1/2"

Précision de répétition : \leq 4%, en fonction du cas de vissage. Données techniques sans garantie. *Indication sans bras de réaction.

VOS AVANTAGES

DP2power

UNE GAMME PNEUMATIQUE POUR UN OUTIL PUISSANT ET ERGONOMIQUE

La visseuse pneumatique DP2power est puissante, robuste et pratique à utiliser et à mettre en œuvre : Avec les valeurs du tableau de conversion, il suffit de régler la pression sur le FRL (Filtre, Régulateur, Lubrificateur) et de commencer à travailler directement.

Avec la DP2*power*, vous avez en main la visseuse parfaite lorsqu'il ne s'agit pas seulement de précision, mais aussi de puissance et de performance en utilisation continue!

- POWER

 Couple nominal à faible pression
- COMPACT

 Forme particulièrement petite et légère
- Fonctionnement silencieux et avec peu de vibrations

POWER

- Couples jusqu'à 8.000 Nm
- Durable et robuste grâce à des composants de haute qualité, adapté à une utilisation continue
- Le couple nominal est atteint à faible pression

• ERGONOMIE

- ▶ Poignée pivotante sur 360°
- Faible niveau de bruit et de vibrations : Travail ergonomique et faible sollicitation de l'opérateur
- Des dimensions compactes grâce à une poignée courte, pour un poids réduit et des performances élevées

🖸 BONUS

- Précision de la Couple en compensant des variations de pression
- Également disponible en version ATEX pour une utilisation dans les zones à risque d'explosion

DONNÉES ET MODÈLE

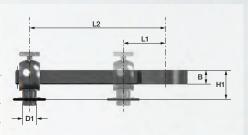
DP2

Туре		e rotation ax.		ssion ervice	-	L1	Н	11	D	1	Vitesse de rotation max.	Poi	ids*	Carré
	Nm	ft-lbs	bar	psi	mm	inch	mm	inch	mm	inch	U/min rpm	kg	lbs	inch
DP2-05	500	369	6	87	290	11.42	181	7.13	68,5	2.70	26,7	4,7	10.4	3/4"
DP2-10	1.000	738	6	87	306	12.05	181	7.13	68,5	2.70	11,9	4,9	10.8	3/4"
DP2-20	2.000	1,475	6	87	330	12.99	181	7.13	80,0	3.15	5,4	6,0	13.2	1"
DP2-30	3.000	2,213	6	87	346	13.62	181	7.13	80,0	3.15	3,4	6,6	14.6	1"
DP2-36	3.600	2,655	6	87	346	13.62	181	7.13	80,0	3.15	3,1	6,6	14.6	1"
DP2-48	4.800	3,540	6	87	378	14.88	181	7.13	86,0	3.39	2,2	8,6	19.0	1 1/2"
DP2-80	8.000	5,900	6	87	446	17.56	181	7.13	101,0	3.98	1,1	12,7	28.0	1 1/2"

DP2 VERSION ANGULAIRE

				L	.1	ŀ	11	ŀ	12	D	1	Vitesse de rotation max.	Poi	ds*	Carré
Nm	ft-lbs	bar	psi	mm	inch	mm	inch	mm	inch	mm	inch	U/min rpm	kg	lbs	inch
550	406	6	87	220	8.66	181	7.13	237	9.33	68,5	2.70	26,7	5,7	12.6	3/4"
1.000	738	6	87	220	8.66	181	7.13	253	9.96	68,5	2.70	11,9	5,9	13.0	3/4"
2.000	1,475	6	87	226	8.90	181	7.13	277	10.90	80,0	3.15	5,4	7,0	15.4	1"
3.000	2,213	6	87	226	8.90	181	7.13	292	11.50	80,0	3.15	3,4	7,6	16.7	1"
3.600	2,655	6	87	226	8.90	181	7.13	292	11.50	80,0	3.15	3,1	7,6	16.7	1"
4.800	3,540	6	87	229	9.02	181	7.13	324	12.75	86,0	3.39	2,2	9,6	21.2	1 1/2"
8.000	5,900	6	87	236	9.29	181	7.13	392	15.43	101,0	3.98	1,1	13,7	30.2	1 1/2"
	Nm 550 1.000 2.000 3.000 3.600 4.800	550 406 1.000 738 2.000 1,475 3.000 2,213 3.600 2,655 4.800 3,540	Nm ft-lbs bar 550 406 6 1.000 738 6 2.000 1,475 6 3.000 2,213 6 3.600 2,655 6 4.800 3,540 6	max. de service Nm ft-lbs bar psi 550 406 6 87 1.000 738 6 87 2.000 1,475 6 87 3.000 2,213 6 87 3.600 2,655 6 87 4.800 3,540 6 87	Nm ft-lbs bar psi mm 550 406 6 87 220 1.000 738 6 87 220 2.000 1,475 6 87 226 3.000 2,213 6 87 226 3.600 2,655 6 87 226 4.800 3,540 6 87 229	Nm ft-lbs bar psi mm inch 550 406 6 87 220 8.66 1.000 738 6 87 220 8.66 2.000 1,475 6 87 226 8.90 3.000 2,213 6 87 226 8.90 3.600 2,655 6 87 226 8.90 4.800 3,540 6 87 229 9.02	Nm ft-lbs bar psi mm inch mm 550 406 6 87 220 8.66 181 1.000 738 6 87 220 8.66 181 2.000 1,475 6 87 226 8.90 181 3.000 2,213 6 87 226 8.90 181 3.600 2,655 6 87 226 8.90 181 4.800 3,540 6 87 229 9.02 181	Nm ft-lbs bar psi mm inch mm inch 550 406 6 87 220 8.66 181 7.13 1.000 738 6 87 220 8.66 181 7.13 2.000 1,475 6 87 226 8.90 181 7.13 3.000 2,213 6 87 226 8.90 181 7.13 3.600 2,655 6 87 226 8.90 181 7.13 4.800 3,540 6 87 229 9.02 181 7.13	Nm ft-lbs bar psi mm inch mm inch mm 550 406 6 87 220 8.66 181 7.13 237 1.000 738 6 87 220 8.66 181 7.13 253 2.000 1,475 6 87 226 8.90 181 7.13 277 3.000 2,213 6 87 226 8.90 181 7.13 292 3.600 2,655 6 87 226 8.90 181 7.13 292 4.800 3,540 6 87 229 9.02 181 7.13 324	Nm ft-lbs bar psi mm inch mm inch mm inch 550 406 6 87 220 8.66 181 7.13 237 9.33 1.000 738 6 87 220 8.66 181 7.13 253 9.96 2.000 1,475 6 87 226 8.90 181 7.13 277 10.90 3.000 2,213 6 87 226 8.90 181 7.13 292 11.50 4.800 3,540 6 87 229 9.02 181 7.13 324 12.75	Nm ft-lbs bar psi mm inch mm inch mm inch mm 550 406 6 87 220 8.66 181 7.13 237 9.33 68,5 1.000 738 6 87 220 8.66 181 7.13 253 9.96 68,5 2.000 1,475 6 87 226 8.90 181 7.13 277 10.90 80,0 3.000 2,213 6 87 226 8.90 181 7.13 292 11.50 80,0 3.600 2,655 6 87 226 8.90 181 7.13 292 11.50 80,0 4.800 3,540 6 87 229 9.02 181 7.13 324 12.75 86,0	Nm ft-lbs bar psi mm inch 227 0.00 3.15	Nm ft-lbs bar psi mm inch mm <td>Nm ft-lbs bar psi mm inch mm<td>Nm ft-lbs bar psi mm inch mm</td></td>	Nm ft-lbs bar psi mm inch mm <td>Nm ft-lbs bar psi mm inch mm</td>	Nm ft-lbs bar psi mm inch mm

Précision de répétition :≤ 4%, en fonction du cas de vissage. Données techniques sans garantie.


^{*}Données sans bras de réaction

DONNÉES ET MODÈLE

BRAS DE RÉACTION COULISSANT

Туре	L1		L2		H1		D1	В		Poids	
	mm	inch	mm	inch	mm	inch	Zoll/inch	mm	inch	kg	lbs
DE/DA/DP-05	70	2.76	400	15.75	51,7	1,93	1"	25	0,98	3,2	7,05
DE/DA/DP-10	70	2.76	400	15.75	51,7	1,93	1"	25	0,98	3,2	7,05
DE/DA/DP-20	68	3.15	400	15.75	51,7	2,04	1"	25	0,98	2,5	7,72
DE/DA/DP-30	75	3.15	400	15.75	51,7	2,04	1"	25	0,98	2,4	7,72
DE/DA/DP-36	65	3.15	400	15.75	48,0	2,04	1"	25	0,98	5,5	8,16
DE/DA/DP-48	115	4.53	400	15.75	68,2	2,69	1 1/2"	30	1,18	5,6	12,13
DE/DA/DP-80	168	6.30	400	15.75	75	2,95	1 1/2"	50	1,97	-	-

BRAS DE RÉACTION LONG

Type	L	.1	ŀ	11	[01	Poids		
	mm	inch	mm	inch	mm	inch	kg	lbs	
DE/DA/DP-05	250	9.84	220	8.66	20	0.79	3,3	5.5	
DE/DA/DP-10	250	9.84	250	9.84	30	1.18	3,9	5,.5	
DE/DA/DP-20	250	9.84	250	9.84	40	1.57	4,5	5.5	
DE/DA/DP-30	250	9.84	250	9.84	40	1.57	4,8	5.5	
DE/DA/DP-36	250	9.84	250	9.84	50	1.97	5,6	5.5	
DE/DA/DP-48	250	9.84	270	10.63	60	2.36	6,6	5.5	
DE/DA/DP-80	auf A	nfrage							

BRAS DE RÉACTION STANDARD

Type	L	.1	ŀ	11	ŀ	12	Poids		
	mm	inch	mm	inch	mm	inch	kg	lbs	
DE/DA/DP-05	150	5.90	80	3.15	15	0.59	1,2	2.64	
DE/DA/DP-10	150	5.90	80	3.15	15	0.59	1,2	2.64	
DE/DA/DP-20	150	5.90	100	3.94	20	0.79	1,9	4.19	
DE/DA/DP-30	190	7.48	100	3.94	20	0.79	2,1	4.63	
DE/DA/DP-36	210	8.27	130	5.12	15	0.59	2,9	6.39	
DE/DA/DP-48	210	8.27	130	5.12	15	0.59	2,9	6.39	
DE/DA/DP-80	250	9.84	165	6.50	25	0.98	6,6	14.5	

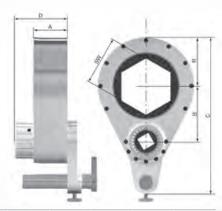
DEPORT LATERAL

POUR LES TYPES DE VISSEUSES DA, DE ET DP

STX

DÉPORT LATÉRAL POUR VISSEUSE DYNAMOMÉTRIQUE JUSQU'À 6.000 NM / SW 150

Le système de déport latéral STX a été spécialement conçu pour répondre aux besoins de nos clients. Robuste et puissant jusqu'à 6.000 Nm. Les cas d'application classiques se trouvent dans les cas de serrage avec de longues tiges filetées comme les échangeurs thermiques à plaques ou dans les endroits difficiles d'accès qui ne peuvent pas être atteints directement avec une visseuse dynamométrique.



Inserts interchangeables disponibles en différentes versions et tailles

COUREUR DE FOND

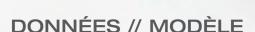
Le STX permet de travailler sur les longues tiges filetées avec des écrous jusqu'à SW 150

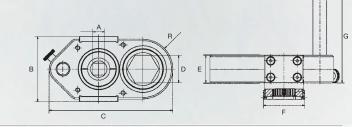
DONNÉES // MODÈLE

Туре	Pour visseuse dynamométrique	Carré inch	Couple de rotation max. Nm	A mm	B mm	C mm	D mm	R mm	SW/AF mm	Poids kg
STX 05-02 TL	DA2/DE1/DP1-05, -10	3/4	500	42	70	170	80	60	45	2,00
STX 22-02 TL	DA2/DE1/DP1-20, -30,	1	2.200	66	81	190	104	64	55	3,20
STX 36-02 TL	DA2/DE1/DP1-36	1	3.600	68	111	254	106	97	100	5,20
STX 60-02 TL	DA2/DE1/DP1-48, -80	11/2	6.000	74	162	365	115	135	150	12,00

DÉPORT LATÉRAL POUR VISSEUSE DYNAMOMÉTRIQUE JUSQU'À 3.600 Nm / SW 60

Grâce à sa forme à la fois petite et robuste, le nouveau déport latéral ST2 est parfaitement utilisable pour tous les cas de serrage avec de longues tiges filetées, comme les échangeurs à plaques ou les serrages à des endroits difficiles d'accès.


1) BRAS DE RÉACTION


La pin d'appui peut être adaptée individuellement, différentes longueurs sont disponibles. Nous développons également des solutions spéciales pour vos cas de serrage.

INSERTS DE RÉDUCTION

Nos inserts de réduction vous permettent une utilisation flexible et économique de votre système déporté latéral. Quelle que soit la taille de visseuse que vous utilisez, notre vaste gamme de réductions permet d'obtenir une flexibilité maximale à moindre coût.

Туре	Pour visseuse dynamométrique	A (Carré) inch	B mm	C mm	D mm	ØF mm	G mm	ØH mm	R mm	Poids kg
ST2 10	DA2/DE1/DP1-05, -10	3/4	98	205	41	82	225	30	45	4,30
ST2 36	DA2/DE1/DP1-20, -30, -36	1	142	269	60	90	246	30	65	9,15

SYSTÈMES DE SERRAGES HYDRAULIQUES

APERÇU DES COMBINAISONS POSSIBLES

K

LT

MX-EC

FSX

ECO

La qualité fiable de Plarad.

Des modèles d'entrée de gamme économiques qui tiennent leurs promesses : Durabilité et fonctionnalité.

POWER

Robuste et facile à utiliser. Appareils de la prochaine génération.

En termes de précision, de vitesse et d'ergonomie, ces appareils automatiques sont la nouvelle référence.

Mise à niveau possible vers les variantes docu et control

DOCU

Caractéristiques de la version docu :

Mode de contrôle, paramétrage, enregistrement et analyse des données de serrages

Mise à niveau possible vers la variante *control*

Mode de contrôle

>>

CONTROL

Caractéristiques de la version control :

dispose en plus des modes couple et angle de rotation

Mode couple / Angle de rotation

Angle de rotation-Mode de comptage

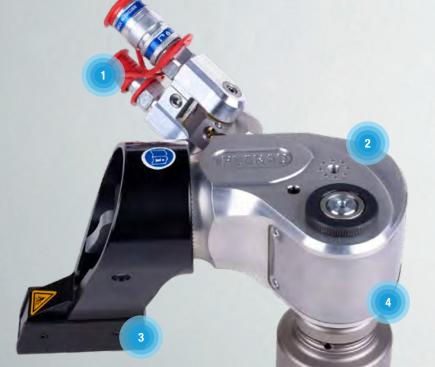
Mode angle de rotation

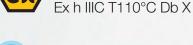
>>

Documentation

Mode de contrôle

Mode couple


MX-EC/MSX


LA POLYVALENCE EN MATIÈRE DE FLEXIBILITÉ ET DE LONGÉVITÉ

Avec son système d'entraînement à dents fines et son mécanisme de changement du carré conducteur, elle est parfaite pour les serrages polyvalents et exigeants.

Des plages de puissance de 50 à 65.000 Nm et des dimensions très réduites ouvrent de nouvelles possibilités à la MX-EC, même dans les zones de travail difficiles d'accès.

- Tourelle d'alimentation 360° x 180° (pivotante et orientable)
- ROBUSTE
 Châssis compact, léger et très résistant
- 3 SÛR & CONFORTABLE
 Bras de réaction
 ajustable à 360°
- RAPIDE
 Vitesse élevée grâce à une adaptation optimale aux pompes Plarad

SQS Système de Qualité et Sécurité

Adaptés à l'industrie et robustes, les outils hydrauliques Plarad offrent la fiabilité, une précision absolue, une grande disponibilité et une bonne rentabilité

- Chemise de sécurité spéciale haute resistance jusqu'à 800 bar de pression de service
- Précision maximale du couple et pas de blocage grâce à un système d'entraînement spécial
- Amortissement du choc de desserrage

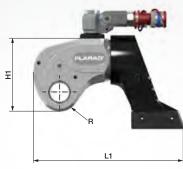
QUALITÉ

- ▶ Système d'entraînement à dents fines
- Pas de blocage de la clé quelle que soit la position du piston
- ▶ Pièces d'usure remplaçables, grande facilité d'entretien

SÉCURITÉ

- Système SQS : la haute pression maintenue dans une chemise en acier trempé protège le châssis
- Protection contre l'endommagement du châssis grâce à un amortisseur de chocs de desserrage intégré
- Le cliquet de sécurité empêche le déverrouillage involontaire du bras de réaction

OPTIONS


- Disponible en système mono-flexible
- Divers accessoires disponibles à insérer dans le système de changement rapide
- De nombreux bras de réaction spéciaux disponibles

S'adapte à vos applications grâce aux nombreux accessoires.

DONNÉES // MODÈLE

Туре	Couple de rotation max.		Pression de service max.		L1		H1		R		B1		Poids*		Carré	Matériau
	Nm	ft-lbs	bar	psi	mm	inch	mm	inch	mm	inch	mm	inch	kg	lbs	inch	
MX-EC 5	500	369	800	11,600	138,0	5.43	47,0	1.85	16,0	0.63	35	1.38	1,65	3.64	1/2"	Acier
MX-EC 10	1.000	738	800	11,600	166,0	6.54	78,5	3.09	20,5	0.81	40	1.57	2,60	5.73	3/4"	Acier
MX-EC 20	2.100	1,549	800	11,600	194,5	7.66	93,0	3.66	24,0	0.94	50	1.97	2,50	5.51	1"	Aluminium
MX-EC 45	4.500	3,319	800	11,600	255,8	10.07	127,0	5.00	32,0	1.26	67	2.64	4,90	10.80	1"	Aluminium
MX-EC 75	7.500	5,532	800	11,600	304,0	11.97	108,5	4.27	37,5	1.48	80	3.15	7,30	16.09	1 1/2"	Aluminium
MX-EC 95	9.500	7,007	800	11,600	301,5	11.87	156,0	6.14	42,0	1.65	85	3.35	9,50	20.94	1 1/2"	Aluminium
MX-EC 120	12.000	8,851	800	11,600	341,0	13.43	169,0	6.65	46,0	1.81	93	3.66	10,50	23.15	1 1/2"	Aluminium
MX-EC 155	15.500	11,433	800	11,600	360,0	14.17	181,0	7.13	49,0	1.93	100	3.94	13,50	29.76	1 1/2"	Aluminium
MX-EC 200	20.500	15,121	800	11,600	394,0	15.51	213,0	8.39	55,0	2.17	112	4.41	20,50	45.19	2 1/2"	Aluminium
MX-EC 300	30.000	22,128	800	11,600	436,0	17.17	245,0	9.65	61,5	2.42	130	5.12	35,50	78.26	2 1/2"	Aluminium
MSX/T 400	40.000	29,504	800	11,600	453,0	17.83	273,5	10.77	66,5	2.62	136	5.35	49,30	108.69	2 1/2"	Aluminium
MSX/T 650	65.000	47,944	800	11,600	431,0	16.97	329,5	12.97	84,0	3.31	155	6.10	77,70	171.30	2 1/2"	Aluminium

FSX

LA CLÉ A CASSETTE LÉGÈRE ET POLYVALENTE

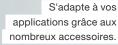
Grâce à sa conception légère et fine et à son système d'entraînement à denture fine, la FSX est parfaite pour les zones étroites, sensibles et difficiles d'accès. La facilité d'adaptation du mode de serrage au mode de desserrage, sa vitesse de serrage élevée et le changement aisé de la cassette font de la FSX l'outil ultime.

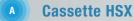
EXII 2 GD
Ex h IIB T4 Gb X
Ex h IIIC T110°C Db X

ÉGALEMENT

PROTECTION

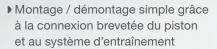
Absorbeur de chocs de desserrage intégré


SÉCURITÉ
Soupape de surpression



LÉGER

Châssis en aluminium haute résistance



- ▶ Travail confortable et sûr grâce à la poignée réglable à 360°
- ▶ Durable grâce aux pièces de rechange remplaçables
- Également disponible pour les brides ANSI

B

Unité d'entraînement SX/SX-EC

▶ Disponible également en version mono-flexible pour une manipulation encore meilleure

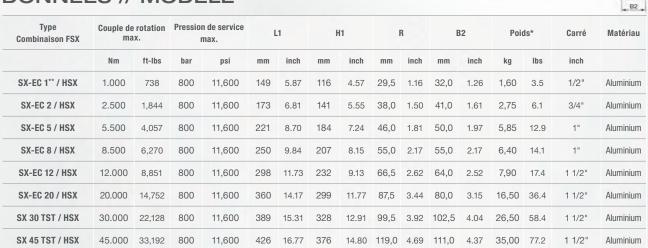
FSX

AVANTAGES

- ▶ Changement rapide et sûr de la cassette grâce à la séparation automatique du piston et du système d'entraînement
- ▶ Tourelle d'alimentation 360° x 180°

QUALITÉ

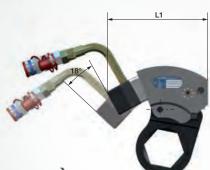
- Système d'entraînement à denture fine et durable
- Pas de blocage de la clé quelle que soit la position du piston
- Système SQS : la haute pression maintenue dans une chemise en acier trempé protège le châssis


- Utilisé avec les pompes Plarad qui permettent la traçabilité et les modes couple et angle de rotation
- Paramètres de serrages préréglables

L'absorbeur protège le chassis des chocs de desserrages

DONNÉES // MODÈLE

Répétabilité : ≤ 4%, en fonction du cas de vissage. Données techniques non garanties. *Indication avec bras de réaction **Livré avec raccord TSM


Série K

LA SOLUTION ULTIME POUR LES CAS PARTICULIERS ET LES ESPACES RESTREINTS

- Un outil des centaines de possibilités d'utilisation : grâce à un changement rapide et simple de la clé polygonale pour une application spécifique au client
- L'appareil spécial de Plarad : Aucun système d'appareil comparable sur le marché
- Rayons très étroits et profondeur de pénétration élevée des inserts
- Clés mixtes ouvertes et refermables pour les applications spéciales
- Nombreuses possibilités de serrage grâce à une large gamme d'accessoires
- Un faible poids pour des performances élevées
- Plage de puissance de 300 à 30.000 Nm
- Jusqu'à 800 bars de pression

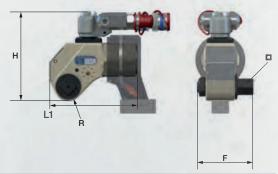
Plusieurs accessoires disponibles pour des missions diverses

Туре	Couple de ma	e rotation ax.		ression de service SW L1 B1				B1	Poids			
	Nm	ft-lbs	bar	psi	min	max	mm	inch	mm	inch	kg	lbs
K 30 TF	3.000	2,213	800	11,600	24	90	163,0	6.42	25	0.98	6,0	13.2
K 60 TF	6.600	4,868	800	11,600	24	90	170,0	6.69	30	1.18	7,3	16.1
K 150 TF	11.000	8,114	800	11,600	27	110	180,0	7.09	45	1.77	11,6	25.6
K 200 TF	20.000	14,752	800	11,600	60	135	248,5	9.78	70	2.76	30,5	67.2
K 300 TF	30.000	22,128	800	11,600	80	150	319,0	12.56	120	4.72	38,0	83.8

Précision de répétition :≤ 4%, en fonction du cas de vissage. Données techniques non garanties.

Série LT

PUISSANT - PRÉCIS - ROBUSTE - LE SYSTÈME DE SERRAGE MANIABLE


Le système mono-flexible "MS" offre un confort d'utilisation optimal et réduit le poids, également disponible en système à deux flexibles "TS"

SQS - Système de Qualité et de Sécurité.

Grâce à la chemise de sécurité haute pression SQS, le châssis est exempt de pression d'huile et peut être utilisé pour l'appui de réaction

Si un bras de réaction est tout de même nécessaire, pas de problème, l'outil est conçu pour également travailler avec un bras.

DONNÉES // MODÈLE

Туре	type de flexible	Couple de ma			on de service max.	Li	ı	Н	1		R		F	Po	ids*
		Nm	ft-lbs	bar	psi	mm	inch	mm	inch	mm	inch	mm	inch	kg	lbs
LT 5 MS	simple	500	369	800	11,600	127,0	5.00	78,0	3.07	17,0	0.67	71,5	2.81	1,5	3.3
LT 10 TS	double	1.000	738	800	11,600	132,0	5.20	89,0	3.50	22,0	0.87	84,0	3.31	2,3	5.1
LT 10 MS	simple	1.000	738	800	11,600	132,0	5.20	89,0	3.50	22,0	0.87	84,0	3.31	1,8	4.0
LT 20 TS	double	2.200	1,623	800	11,600	166,5	6.56	100,0	3.94	29,5	1.16	104,0	4.09	4,0	8.8
LT 20 MS	simple	2.200	1,623	800	11,600	147,0	5.79	109,0	4.29	29,0	1.14	104,0	4.09	3,3	7.3
LT 50 TS	double	5.000	3,688	800	11,600	211,5	8.33	128,5	5.06	37,0	1.46	134,0	5.28	7,0	15.4
LT 50 MS	simple	5.000	3,688	800	11,600	189,5	7.46	132,0	5.20	37,0	1.46	134,0	5.28	6,2	13.7
LT 100 TS	double	10.000	7,376	800	11,600	243,7	9.59	159,0	6.26	49,0	1.93	147,0	5.79	11,1	24.5

Précision de répétition :≤ 4%, en fonction du cas de vissage. Données techniques non garanties.

^{*}Données sans bras de réaction

UNE BASE SOLIDE

Le groupe d'entrée de gamme pour l'utilisation manuelle d'outils hydrauliques. Avec une vitesse de serrage élevée grâce à la version 2 étages en option, elle offre des performances optimales.

Grâce à la technologie brevetée "moteur immergé", il fonctionne de manière efficace et fiable. La construction robuste et les intervalles de maintenance optimisés garantissent une rentabilité élevée.

1 FLEXIBLE


Utilisation d'une ou plusieurs clés hydrauliques en technique mono ou bi flexible

2 ROBUSTE

Le cadre industriel stable et résistant protège contre les dommages

Filtre à huile extérieur et conception facile à entretenir pour une maintenance simplifiée

DONNÉES // MODÈLE

Туре	Mode de fonction	Pressi	on de service max.	-	ébit nax.		t max. tages)		Puissance Iu moteur	Dimensions (L1 x B1 x H1)		Poids
		bar	psi	I/min	gal/min	I/min	gal/min	kW	hp		kg	lbs
XE1 <i>eco</i> 10	Manuel 800 11,600 0,8 0.21 5,4 1.43 0,8		0.0	1.07	455 x 286 x 449 mm	22	48.5					
VEIGGO IO	Mariuei	000	11,000	0,0	0.21	5,4	1.43	0,6	1.07	17.91 x 11.26 x 17.68 in	22	40.5
XE1 <i>eco</i> 20	Manuel	800	11.600	1.2	0.32	8.0	2.11	4.4	1.48	500 x 343 x 465 mm	29	63.9
AE 1860 ZU	Mariuei	000	11,000	1,2	0.32	0,0	2.11	1,1	1.40	19.69 x 13.50 x 18.31 in	29	03.9
XE1 <i>eco</i> 30	Manual	900	11 600	2.0	0.70	12.0	3.49	2.2	2.95	500 x 343 x 465 mm	35	77.2
VE1600 20	Manuel	800	11,600	3,0	0.79	13,2	3.49	۷,۷	2.95	19.69 x 13.50 x 18.31 in	33	11.2

Précision des manomètres : classe 1. Données techniques non garanties.

Groupes disponibles dans les tensions suivantes: 110V 50Hz, 110V 60Hz, 230V 50Hz, 230V 60Hz, 400V 50Hz, 400V 60Hz. Autres sur demande.

XE1power

ENTIÈREMENT AUTOMATIQUE EN APPUYANT SUR UN BOUTON

La XE1power pose de nouvelles références dans la technique de serrage hydraulique. D'une simple pression sur un bouton, le système entièrement automatique permet d'obtenir des résultats de serrage rapides et précis. Le déroulement du travail est nettement simplifié grâce à l'arrêt automatique lorsque le couple final est atteint. Efficacité, précision et confort sont réunis dans ce groupe innovant pour les cas de serrage exigeants.

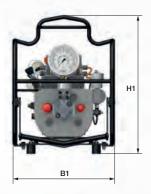
Pouvant être mise à niveau vers les modèles docu et control, la XE1power constitue l'entrée dans la génération des pompes intelligentes.

PERFORMANCE

Haute vitesse de serrage avec la version 2 étages en option

CONFORT

Le serrage entièrement automatique permet un travail agréable jusqu'à la pression hydraulique préréglée



INFORMATION

Télécommande avec écran couleur : les paramètres de fonctionnement importants sont toujours visibles (pression, message i0/ni0, température du moteur/de l'huile, heures de fonctionnement, consommation électrique, etc.)

DONNÉES // MODÈLE

Туре	Mode de fonction		n de service max.	débit max.		débit max. (2 étages)		Puissance du moteur		Dimensions (L1 x B1 x H1)	ı	Poids
		bar	psi	I/min	gal/min	I/min	gal/min	kW	hp		kg	lbs
XE1 <i>power</i> 10	Automatique	800	11,600	0,8	0.21	5,4	1.43	0,8	1.07	455 x 286 x 449 mm 17.91 x 11.26 x 17.68 in	24	52.9
XE1 <i>power</i> 20	Automatique	800	11,600	1,2	0.32	8,0	2.11	1,1	1.48	500 x 343 x 465 mm 19.69 x 13.50 x 18.31 in	34	75.0
XE1 <i>power</i> 30	Automatique	800	11,600	3,0	0.79	13,2	3.49	2,2	2.95	500 x 343 x 465 mm 19 69 x 13 50 x 18 31 in	36	79.4

Précision des manomètres : classe 1. Données techniques non garanties.

Groupes disponibles dans les tensions suivantes: 110V 50Hz, 110V 60Hz, 230V 50Hz, 230V 60Hz, 400V 50Hz, 400V 60Hz. Autres sur demande.

INTELLIGEANTE GRÂCE À DES ARGUMENTS CONVAINCANTS

Basé sur le XE1power, le XE1docu offre une multitude de fonctions supplémentaires pour une documentation sans faille. Les données peuvent être enregistrées et transférées sans problème sur des terminaux, afin de garantir une documentation transparente des cas de serrage. Le serrage entièrement automatique et l'arrêt automatique lorsque le couple de serrage final est atteint rendent ce groupe particulièrement performant.

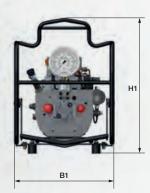
Grâce à la télécommande avec écran couleurs, les utilisateurs gardent toujours un œil sur les paramètres de fonctionnement importants.

Cette unité de commande enregistre tous les serrages réalisés

AUTONOME

Travail rapide et sûr grâce à des cas de serrage prédéfinis

PERFORMANCE


En version 2 étages, l'unité documentée la plus rapide du marché

HAUTE TECHNOLOGIE

Des algorithmes brevetés contrôlent le serrage via différents procédés

DONNÉES // MODÈLE

Туре	Mode de fonction	Pressio	Pression de service max.		débit max.		t max. ages)		issance moteur	Dimensions (L1 x B1 x H1)	Р	oids
		bar	psi	I/min	gal/min	I/min	gal/min	kW	hp		kg	lbs
VE4 door 40	A	000	11 000	0.0	0.01	F 4	1.40	0.0	1.07	455 x 286 x 449 mm	0.4	50.0
XE1 <i>docu</i> 10	Automatique	800	11,600	0,8	0.21	5,4	1.43	0,8	1.07	17.91 x 11.26 x 17.68 in	24	52.9
VF1 doo;; 20	Automotions	200	11 600	1.0	0.00	0.0	0.11	4.4	1 40	500 x 343 x 465 mm	2.4	7F 0
XE1 docu 20	Automatique	800	11,600	1,2	0.32	8,0	2.11	1,1	1.48	19.69 x 13.50 x 18.31 in	34	75.0
VE1 door 20	Automatique	tomatique 800	11,600	2.0	0.70	10.0	2.40	2.2	0.05	500 x 343 x 465 mm	36	79.4
XE1docu 30				3,0	0.79	13,2	3.49	2,2	2.95	19.69 x 13.50 x 18.31 in	30	79.4

Précision des manomètres : classe 1. Données techniques non garanties

Groupes disponibles dans les tensions suivantes : 110V 50Hz, 110V 60Hz, 230V 50Hz, 230V 60Hz, 400V 50Hz, 400V 60Hz. Autres sur demande.

LE CHEF D'ŒUVRE D'EFFICACITÉ

La XE1control est le nec plus ultra en matière de serrage au couple et d'angle de rotation, avec une fonction de documentation intégrée. Basé sur le XE1docu, elle offre une gamme complète de fonctionnalités pour une polyvalence et une efficacité maximales.

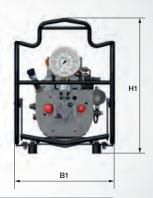
Avec des cas de serrage prédéfinis, un serrage automatique et la documentation du couple et de l'angle de rotation, elle offre un travail rapide, sûr et performant.

INTELLIGENTE

Transfert des données sur les terminaux pour une documentation complète

PRÉCISE

Serrage avec angle de rotation (+-2°) sans accessoire de détection supplémentaire grâce à un procédé breveté


CONFORTABLE

Serrage entièrement automatique jusqu'à la pression hydraulique préréglée en appuyant sur une seule touche

Туре	Mode de fonction	Pressi	on de service max.	-	ébit iax.		ssance moteur	Dimensions (L1 x B1 x H1)	Pe	oids
		bar	psi	I/min	gal/min	kW	hp		kg	lbs
VE4 control 40	At	000	11.000	0.0	0.01	0.0	1.07	455 x 286 x 449 mm	00	F7.0
XE1 control 10	Automatique	800	11,600	0,8	0.21	0,8	1.07	17.91 x 11.26 x 17.68 in	26	57,3
VE4 / 00	A t t !	000	44.000	1.0	0.00	4.4	1 10	500 x 343 x 465 mm	04	00.0
XE1 control 20	Automatique	800	11,600	1,2	0.32	1,1	1.48	19.69 x 13.50 x 18.31 in	31	68,3
XE1control 30		Automotique 000	11 600	2.0	0.70	0.0	0.05	500 x 343 x 465 mm	0.5	77.0
XETCOILLOI 30	Automatique	800	0 11,600	3,0	0.79	2,2	2.95	19.69 x 13.50 x 18.31 in	35	77,2

Précision des manomètres : classe 1. Données techniques non garanties.

Groupes disponibles dans les tensions suivantes : 110V 50Hz, 110V 60Hz, 230V 50Hz, 230V 60Hz, 400V 50Hz, 400V 60Hz. Autres sur demande.

LA PREMIÈRE POMPE À HAUT DÉBIT ALIMENTÉE PAR BATTERIE, ENTIÈREMENT AUTOMATIQUE

Le nouveau groupe hydraulique XA1*power* révolutionne le monde du travail dans le domaine des outils hydrauliques. Son utilisation est très simple, puisqu'il suffit d'emporter une clé, des flexibles et la XA1*power*. L'idéal pour les équipes travaillant à l'internationale car pas besoin de ce soucier de la fréquence ou de la tension d'alimentation locale.

Les utilisateurs peuvent se concentrer entièrement sur les travaux à effectuer. Une charge de batterie permet de réaliser en moyenne 170 serrages*.

Conçu pour une utilisation jusqu'à 800 bars, avec les outils hydrauliques allant jusqu'à 150.000 Nm, elle est, avec seulement 10Kg (batteries incluses), un poids plume par rapport aux groupes standards.

BATTERIE

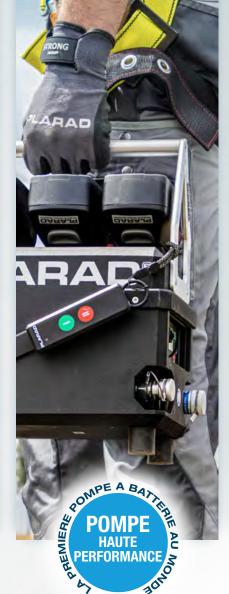
Jeu de 3 batteries interchangeables pour environ 170 serrages (M36)

2 SÉCURITÉ

Le processus de serrage se termine automatiquement par un signal sonore lorsque le couple préréglé est atteint

COMPATIBILITÉ

Compatible avec toutes les clés hydrauliques. Utilisation dans le monde entier sans restrictions de tension


ERGONOMIE

Env. 10 kg batteries incluses télécommande sans fil émission de bruit max. 70 db

MODE DE FONCTION

- Groupe hydraulique alimenté par batterie interchangeable (système FEIN)
- Sûr et entièrement automatique
- Mode automatique, en appuyant sur un bouton jusqu'au couple ou à la pression préréglée

OPTIONS

- Conception compacte et robuste
- Liberté de mouvement maximale grâce à la télécommande radio
- Utilisable de manière mobile dans le monde entier, indépendamment de la fréquence et de la tension

DONNÉES // MODÈLE

Système de batterie	3 x batterie 18 V 5.2 Ah (interchangeable)
Tension de service	54 V
Capacité de la batterie	3 x 5,2 Ah
Puissance du moteur	0,5 kW 0.67 CV
Max. Pression	800 bar 11,600 psi
Max. Débit volumétrique	1,8 l/min (à 100 bar) 0.48 gal/min à 1,450 psi
	1 l/min (à 800 bar) .26 gal/min à 11,600 psi
Mode de fonctionnement	automatique
Volume d'huile	1 I 0.26 gal
Poids	10 kg batteries incluses 22 lb batteries incluses
Dimensions(L x B x H)	185 x 270 x 360 mm 7.28" x 10.63" x 14.17" in
Températures d'utilisation	-20°C bis +50°C -4°F to 122°F
Niveau de pression acoustique	<70 dB

DEUX EN UN, 800 ET 1.500 BAR DE PRESSION

Basé sur la XE1*docu*, la DualXE1*docu* offre une multitude de fonctions supplémentaires pour une documentation sans faille.

Les données peuvent être transférées sans problème sur des terminaux afin de garantir une documentation transparente des cas de serrage. Le mode entièrement automatique avec l'arrêt autonome lorsque le couple final est atteint rendent ce groupe particulièrement performant. Grâce à la télécommande avec écran couleur, les utilisateurs gardent toujours un œil sur les paramètres de fonctionnement importants.

NOTRE SÉRIE DE POMPES
NOTRE SÉRIE DE POMPES
SPOUR LE FONCTIONNEMENT
SPOUR LE FONCTIONNEMENT
DES CLÉS HYDRAULIQUES
DES CLÉS HYDRAULIQUES
TENDEURS

AUTONOME

Travail rapide et sûr grâce à des cas de serrage prédéfinis

PERFORMANCE


En version 2 étages, l'unité documentée la plus rapide du marché

HAUTE TECHNOLOGIE

Des algorithmes brevetés contrôlent le serrage via différents procédés

DONNÉES // MODÈLE

Туре	Mode de fonction		n de service max.	ce débit max.		débit max. (2 étages)			uissance u moteur	Dimensions (L1 x B1 x H1)	F	Poids
		bar	psi	I/min	gal/min	I/min	gal/min	kW	hp		kg	lbs
DXE1docu 20	Automatique Automatique	800 /	11,600 /	1.2	0.32	8.0	2.11	-1-1	1.48	500 x 343 x 465 mm	40	88
DAETUUGU 20		1,500	21.750	1.2	0.32	0.0	2.11	1.1	1.40	19.7 x 13.5 x 18.3 in	40	00
DXE1docu 30		Automatique 800 / 1,500	11,600 /	0.0	0.70	10.0	0.40	22	0.05	500 x 343 x 465 mm	40	00
DAETUUCU 30			21.750	3.0	0.79	13.2	3.49	2.2	2.95	19.7 x 13.5 x 18.3 in	42	93

Précision des manomètres : classe 1. Données techniques non garanties.

Groupes disponibles dans les tensions suivantes : 110V 50Hz, 110V 60Hz, 230V 50Hz, 230V 60Hz, 400V 50Hz, 400V 60Hz. Autres sur demande.

DXE1control

LE CHEF D'ŒUVRE D'EFFICACITÉ

La DualXE1control est le nec plus ultra en matière de serrage au couple et d'angle de rotation, avec une fonction de documentation intégrée. Basée sur la DualXE1docu, elle offre une gamme complète de fonctionnalités pour une polyvalence et une efficacité maximales.

Avec des cas de serrage prédéfinis, un mode automatique et la documentation du couple, de l'angle de rotation et de la force de précontrainte, cette pompe permet de travailler rapidement, en toute sécurité et de manière optimale.

INTELLIGEANTE

Transfert des données sur les terminaux pour une documentation complète

PRÉCISE

Serrage avec angle de rotation (+-2°) sans accessoire de détection supplémentaire grâce à un procédé breveté

CONFORTABLE

Vissage entièrement automatique jusqu'à la pression hydraulique préréglée en appuyant sur une seule touche

DONNÉES // MODÈLE

Туре	Mode de fonction	Pression ma	de service ax.		ébit ax.	Puissance Dimensions (L1 x B1 x H1)			Poids	
		bar	psi	I/min	gal/min	kW	hp		kg	lbs
DXE1 <i>control</i> 20	Automatique	800 / 1.500	11,600 / 21,750	1,2	0.32	1,1	1.48	500 x 343 x 465 mm	40	88

Précision des manomètres : classe 1. Données techniques non garanties

Groupes disponibles dans les tensions suivantes : 110V 50Hz, 110V 60Hz, 230V 50Hz, 230V 60Hz, 400V 50Hz, 400V 60Hz. Autres sur demande.

TXP1eco

LA POMPE PNEUMATIQUE POUR LES TENDEURS HYDRAULIQUES

La pompe hydraulique pneumatique TXP1eco est idéale pour les applications exigeantes de tendeurs hydrauliques. Avec une capacité de pression allant jusqu'à 1500 bars, elle offre la force nécessaire pour les tâches difficiles. L'utilisation est simple : la montée en pression et la décompression s'effectuent par pression sur un bouton mécanique et une décompression de sécurité manuelle offre une sécurité supplémentaire. Grâce à son cadre de protection robuste, la TXP1eco est résistante et mobile, soutenue par des roulettes sur le cadre.

Avec un volume d'huile de 6 litres, elle convient également pour les grands tendeurs hydrauliques ou plusieurs tendeurs connectés simultanément. Le TXP1 allie performance, sécurité et mobilité dans un design convivial.

LE CHOIX SOLIDE

Pour travail sur les applications au tendeur hydraulique et sûr jusqu'à 1.500 bars

FONCTIONNEMENT SIMPLE

Mise en pression et décompression par simple pression sur un bouton et décharge de sécurité manuelle pour les cas extrêmes

ROBUSTE ET MOBILE

Technique de moteur immergé dans l'huile et cadre de protection robuste avec roulettes

DONNÉES // MODÈL

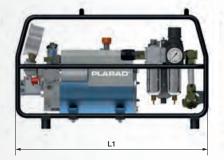
Туре	Mode de fonction		de service lax.		ebit ax.		neumatique ax.	Dimensions (L1 x B1 x H1)	Po	ids
		bar	psi	I/min	gal/min	bar	psi		kg	lbs
TXP1eco 20	manuel	1,500	21,750	0.7	0.185	3 - 7	43 - 102	457 x 338 x 540 mm	28	61.

Précision des manomètres : classe 1. Données techniques non garanties.

XP1eco

POMPE PNEUMATIQUE CONSTANTE JUSQU'À LA PRESSION FINALE

Notre groupe hydraulique pneumatique XP1eco offre, à l'instar des modèles à moteur électrique, robustesse, longévité et un débit constant jusqu'à la pression finale. Le moteur pneumatique intégré dans le réservoir d'huile empêche le givrage et refroidit en même temps l'huile hydraulique. Le modèle XP1eco-ATEX est en outre adapté à une utilisation dans des zones à risque d'explosion en zone 2G.


FONCTIONNEMENT SIMPLE

Mise en pression et décompression par simple pression sur un bouton et décharge de sécurité manuelle pour les cas extrêmes

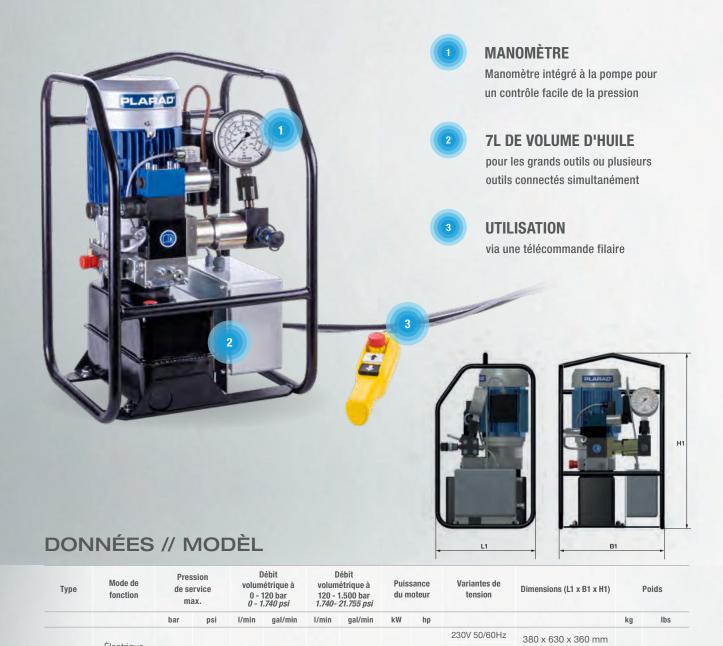
PUISSANCE

Rapidité de travail élevée grâce au modèle à 2 étages

DONNÉES // MODÈL

Туре	Mode de fonction	Pression de service débit max. max.			t max. ages)	Dimensions (L1 x B1 x H1)	Poi	ids		
		bar	psi	I/min	gal/min	I/min	gal/min		kg	lbs
VD1 acc 20 2 Ciona	Automatik	000	11 600	7.0	1.05	1.6	0.400	634 x 257 x 395 mm	32	70 F
XP1 <i>eco</i> 20 2-Stage	automatic	800	11,600	7.0	1.85	1.6	0.422	24.96 x 10.12 x 15.55 in	32	70.5

Précision des manomètres : classe 1. Données techniques non garanties.



LA POMPE ROBUSTE ET FIABLE

Le groupe est équipé d'un puissant moteur électrique et peut être raccordé sans peine à de grands tendeurs hydrauliques grâce au réservoir de 7 litres. Il offre une pression de service maximale de 1.500 bar et un débit pouvant atteindre 3 l/min.

La pompe dispose d'un manomètre intégré pour une lecture facile de la pression. L'appareil convient parfaitement aux cas d'application où aucune documentation n'est nécessaire.

Précision des manomètres : classe 1. Données techniques non garanties.

1.500

21,756

0.79

0,35

0.09

1.48

110V 50/60Hz

400V 50H

15.0 x 24.8 x 14.2 in

84

Électrique

TXE1eco

TXE1docu

LA SOLUTION HAUT DE GAMME POUR LES VÉRINS TENDEURS

Le TXE1docu dispose de nombreuses fonctions supplémentaires afin d'assurer une documentation complète. Le transfert des données vers des terminaux permet un enregistrement transparent des opérations de serrage. Le maintien de pression automatique en cas de chute de pression rend cette pompe extrêmement performante.

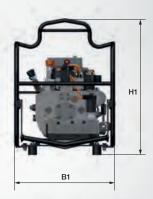
Grâce à la télécommande avec écran couleur, les utilisateurs ont toujours un œil sur les paramètres de fonctionnement importants.

AUTONOME

Travail rapide et sûr grâce à des cas de serrage prédéfinis

HAUTE TECHNOLOGIE

Le maintien de pression automatique assure des serrages sûres et de qualité



Groupes hydrauliques sans mode de maintien

Groupes hydrauliques avec mode de maintien

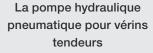
DONNÉES // MODÈLE

Туре	Mode de fonction	Pression o			débit max.	Puiss du mo		Dimensions (L1 x B1 x H1)	Po	ids
		bar	psi	I/min	gal/min	kW	hp		kg	Ibs
VE1doou 10	Automatique	1 500	21,756	0.0	0.01	0.0	1.07	450 x 317 x 366 mm	20	0.4
TXE1docu 10		1.500		0,8	0.21	0,8	1.07	17.7 x 12.5 x 14.4 in	38	84
EVEL I OO	A 1	ue 1.500	04.750	4.0	0.00	0.0	0.05	500 x 343 x 465 mm	44	00
TXE1docu 30	Automatique		21,756	1,0	0.26	2,2	2.95	19.7 x 13.5 x 18.3 in	41	90

Précision des manomètres : classe 1. Données techniques non garanties

VÉRINS TENDEURS

APERÇU DES COMBINAISONS POSSIBLES



La pompe hydraulique pneumatique TXP1*eco* est idéale pour les applications simples de vérins tendeurs

Robuste et simple dans l'application jusqu'à 1.500 bars

TXE1 ECO

La pompe robuste et fiable

Le groupe est équipé d'un moteur électrique puissant et peut être raccordé à de grands vérins tendeurs grâce à son réservoir de 7 litres.

Parfait pour les cas d'application ne nécessitant pas de documentation.

TXE1 DOCU

La version intelligente docu : apportant une documentation complète de vos serrages (exportation sur vos terminaux)

Le maintien de la pression automatique rend cette unité extrêmement efficace. La télécommande avec écran couleur affiche les paramètres de fonctionnement importants.

Mode de contrôle

Mode couple

Mode de tendeurs

Documentation

Mode de contrôle

Mode couple

Mode de tendeurs

VÉRINS TENDEURS

1 ÉTAGE

PSE

SERRAGE EN TENSION DANS UN ESPACE RÉDUIT

Grâce à sa conception compacte, le vérin tendeur hydraulique à un étage PSE est particulièrement avantageux dans les espaces axiaux restreints. Avec son ouverture traversante, le vérin tendeur est également adapté en cas de boulonnerie trop longue. En outre, le PSE dispose également de toutes les caractéristiques importantes du PSD (voir vue de coupe page suivante).

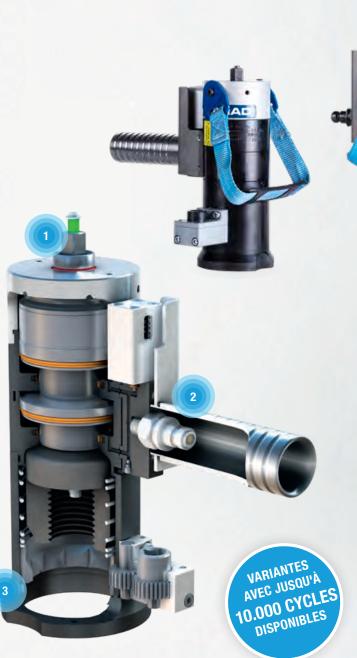
COMPTEUR DE CYCLES

Prévention des dommages et des pannes grâce à une maintenance préventive

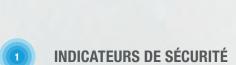
FLEXIBLE Débouchant pour les longues boulonneries

- **MANIABILITÉ** Jupe d'appui pivote sur 360°
- **COMPACT** Surface d'appui optimisée pour les espaces restreints
- **ERGONOMIE**

Rotation simple et rapide de l'écrou garantie par la transmission par engrenage


VÉRINS TENDEURS

2 ÉTAGES 3 ÉTAGES 4 ÉTAGES


PSD/PST/PSQ

RAPIDE, SÛR, FACILE À UTILISER

Grâce à une conception à plusieurs étages, les vérins tendeurs fournissent les forces de traction nécessaires avec un diamètre minimal. Ils sont utilisés dans des espaces latéraux restreints. La force de tension peut être réglée avec précision. La conception modulaire permet de s'adapter de manière optimale et individuelle à votre cas de serrage spécifique.

VERT : La profondeur d'installation sur la boulonnerie est vérifiée

ROUGE : La course maximale du vérins tendeurs est atteinte

2 ERGONOMIE

La poignée amovible offre une prise en main optimale et protège les raccords de tout dommage

Manipulation optimale : alignement facile grâce au support rotatif, indépendamment de la disposition des vis

O EFFICACITÉ

 ▶ Facilité d'utilisation grâce à l'entraînement par engrenage : Un vissage simple et rapide de l'écrou est garanti par l'entraînement par engrenage à l'aide d'une clé à cliquet/clé dynamométrique

HAUTE TECHNOLOGIE

- Prévention des dommages de montage lors de la mise en place du vérin tendeur : la douille est flexible axialement grâce à un ressort
- Le retour automatique du piston ramène rapidement le vérin dans sa position initiale après l'opération

SÉCURITÉ

Le mécanisme de limitation de course pour une sécurité maximale : La butée de fin de course limite la sortie du piston

ERGONOMIE

- "Fail Safe System":
 Sécurité maximale grâce
 à la limitation de la course
- Indicateur visuel de fin de course et de bonne installation
- Poignée démontable et dragonne pour un maximum de confort et de sécurité

PERFORMANCE

- Convient pour les vérins tendeurs montés en série
- ▶ Travail rapide grâce au retour automatique du piston
- Forces de serrage jusqu'à 3.000 kN

O MISE À NIVEAU

- ▶ Combiné avec les pompes Plarad, l'enregistrement de la force de tension est disponible
- Des anneaux supplémentaires assurent une adaptation optimale aux différentes longueurs de vis

DONNÉES // MODÈLE

PSE

Туре		de traction max.			Course fonction		Н	D1		D2		Po	oids				
	kN	lbf	bar	psi	mm	inch	mm	inch		mm	inch	mm	inch	mm	inch	kg	lbs
PSE 20	212	47,659	1.500	21,756	20	0.79	8	0.31	8.000	100	3.94	64	2.52	48	1.89	2,1	4.63
PSE 24	305	68,567	1.500	21,756	24	0.94	8	0.31	8.000	95	3.74	80	3.15	72	2.83	3,2	7.05
PSE 30	482	108,358	1.500	21,756	30	1.18	10	0.39	8.000	79	3.11	98	3.86	74	2.91	5,1	11.24
PSE 33	573	128,816	1.500	21,756	33	1.30	8	0.31	8.000	125	4.92	106	4.17	90	3.54	6,4	14.11
PSE 36	681	153,095	1.500	21,756	36	1.42	10	0.39	8.000	125	4.92	114	4.49	95	3.74	7,1	15.65
PSE 42	980	220,313	1.500	21,756	42	1.65	10	0.39	8.000	135	5.31	135	5.31	115	4.53	11,1	24.47
PSE 48	1.235	277,639	1.500	21,756	48	1.89	10	0.39	8.000	144	5.67	152	5.98	130	5.12	15	33.07
PSE 52	1.458	327,771	1.500	21,756	52	2.05	10	0.39	8.000	151	5.94	163	6.42	137	5.39	17,6	38.80
PSE 56	1.676	376,780	1.500	21,756	56	2.20	10	0.39	8.000	159	6.26	175	6.89	147	5.79	21,0	46.30
PSE 64	2.259	507,843	1.500	21,756	64	2.52	10	0.39	8.000	197	7.76	205	8.07	170	6.69	27,8	61.29
PSE 72	2.960	665,434	1.500	21,756	72	2.83	10	0.39	8.000	208	8.19	245	9.65	180	7.09	42,5	93.70

PSD // PST // PSQ

Туре		de traction max.		n de service nax.		mètre minal	Co	urse	Cycles de fonction	Н	1		D1	ı	02	Po	oids
	kN	lbf	bar	psi	mm	inch	mm	inch		mm	inch	mm	inch	mm	inch	kg	lbs
PSD 20	220	49,458	1.350	19,580	20	0.79	8	0.31	4.500	162	6.4	51	2.01	48	1.89	3,2	7.1
PSD 24	313	70,365	1.350	19,580	24	0.94	8	0.31	4.500	196	7.7	58	2.28	55	2.17	4,8	10.6
PSD 27	397	89,249	1.370	19,870	27	1.06	8	0.31	4.500	218	8.6	66	2.60	65	2.56	5,7	12.6
PSD 30	471	105,885	1.500	21,756	30	1.18	8	0.31	4.500	196	7.7	71	2.80	70	2.76	5,7	12.6
PSD 33	581	130,614	1.500	21,756	33	1.30	10	0.39	4.500	215	8.5	79	3.11	80	3.15	7,2	15.9
PSD 36	678	152,420	1.500	21,756	36	1.42	10	0.39	4.500	228	9.0	83	3.27	83	3.27	8,1	17.9
PSD 39	808	181,646	1.500	21,756	39	1.54	10	0.39	4.500	250	9.8	92	3.62	92	3.62	10,4	22.9
PSD 42	937	210,646	1.500	21,756	42	1.65	10	0.39	4.500	263	10.4	98	3.86	98	3.86	12,3	27.1
PSD 45	1089	244,817	1.500	21,756	45	1.77	10	0.39	4.500	256	10.1	106	4.17	100	3.94	14,0	30.9
PSD 48	1278	287,306	1.500	21,756	48	1.89	10	0.39	4.500	269	10.6	112	4.41	112	4.41	16,0	35.3
PSD 52	1476	331,818	1.500	21,756	52	2.05	10	0.39	4.500	293	11.5	120	4.72	120	4.72	19,6	43.2
PSD 56	1695	381,051	1.500	21,756	56	2.20	10	0.39	4.500	300	11.8	130	5.12	130	5.12	23,4	51.6
PSD 60	1959	440,401	1.500	21,756	60	2.36	10	0.39	4.500	343	13.5	140	5.51	140	5.51	30,0	66.1
PSD 64	2233	501,998	1.500	21,756	64	2.52	10	0.39	4.500	350	13.8	146	5.75	146	5.75	32,7	72.1
PSD 68	2825	635,085	1.500	21,756	68	2.68	10	0.39	4.500	424	16.7	167	6.57	167	6.57	52,6	116.0
PSD 72	2825	635,085	1.500	21,756	72	2.83	10	0.39	4.500	424	16.7	167	6.57	167	6.57	53,6	118.2
PSD 80	3587	806,390	1.500	21,756	80	3.15	10	0.39	4.500	457	18.0	188	7.40	180	7.09	71,4	157.4
PSD 90	4524	1,017,036	1.500	21,756	90	3.54	10	0.39	4.500	486	19.1	225	8.86	200	7.87	106,7	235.2
PST 48	1404	315,632	1.400	20,306	48	1.89	10	0.39	4.500	380	15.0	112	4.41	112	4.41	23,6	52.0
PST 56	1673	376,105	1.400	20,306	56	2.20	10	0.39	4.500	394	15.5	120	4.72	130	5.12	28,8	63.5
PST 64	2239	503,347	1.500	21,756	64	2.52	10	0.39	4.500	418	16.5	130	5.12	134	5.28	36,8	81.1
PSQ 36	748	168,157	1.400	20,306	36	1.42	10	0.39	4.500	315	12.4	77	3.03	75	2.95	10,3	22.7
PSQ 42	1090	245,042	1.400	20,306	42	1.65	10	0.39	4.500	343	13.5	91	3.58	85	3.35	14,6	32.2
PSQ 48	1450	325,973	1.400	20,306	48	1.89	10	0.39	4.500	372	14.6	105	4.13	98	3.86	20,7	45.6
PSQ 56	1959	440,401	1.400	20,306	56	2.20	10	0.39	4.500	428	16.9	123	4.84	110	4.33	31,5	69.4
PSQ 64	2705	608,108	1.400	20,306	64	2.52	10	0.39	4.500	471	18.5	141	5.55	126	4.96	44,6	98.3

Précision de répétition :≤ 4%,en fonction du cas de vissage. Données techniques non garanties. Disponible avec 10.000 cycles sur demande

XVK & XVR

SERRAGE SIMPLE ET RAPIDE AVEC SÉCURITÉ ANTI-RETOUR

Fini les dépendances! Nos multiplicateurs de couple manuels vous offrent la liberté de travailler partout, sans dépendre de l'électricité ou de l'air comprimé. Que ce soit dans des zones isolées, sur des chantiers ou dans des ateliers, les appareils de la série XVR/XVK fonctionnent toujours et partout.

- 1
- SERRAGE DESSERRAGE

Levier de sélection entre rotation à droite ou à gauche

- 2
- SÉCURITÉ

protection contre les surcharges grâce à une goupille de cisaillement facilement remplaçable

- 3
- **FLEXIBLE**

Bras de réaction réglable en hauteur pour une utilisation optimale


ATHRES.

- ▶ Classe de puissance de 200 à 10.000 Nm
- ▶ Petites dimensions
- ▶ Faible poids
- ▶ Peu d'entretien et longue durée de vie
- Convient à toutes les exigences industrielles
- ▶ Remplace les solutions provisoires comme les rallonges et les clés à chocs

RENTABILITÉ

Nos appareils manuels ne garantissent pas seulement des performances fiables, ils ménagent aussi votre porte-monnaie. Avec notre solution, vous économisez non seulement du temps et des ressources, mais aussi de l'argent sans faire de compromis sur la qualité.

PERFORMANCE

Notre technologie de serrage vous permet d'atteindre des couples de serrage élevés et de maîtriser même les assemblages les plus exigeants. Avec un couple de sortie pouvant atteindre 10 000 Nm, aucun serrage n'est trop difficile et aucun desserrage n'est trop dur.

FLEXIBILITE

Dans les situations où l'alimentation en électricité ou en air comprimé peut ne pas être fiable ou faire défaut, un outil à main offre une solution fiable. Cela est particulièrement important dans les situations d'urgence ou dans les régions où l'infrastructure est insuffisante.

PACO

DONNÉES // MODÈLE

Тур	Couple de rotation max.		Ratio	H1		D		Entrée Carré	Rapport de transmission	Poids*		
	mm	inch	mm	inch	kg	Ibs	Nm	ft-lbs				
XVK 15**	172	6.77	81	3.19	2,6	5.7	1.700	1,254	01:04	3/4"	1"	
XVR 25	302	11.89	81	3.19	5,2	11.5	2.300	1,696	01:07	3/4"	1"	
XVR 35	273	10.75	81	3.19	5,0	11.0	3.600	2,655	01:10	3/4"	1"	
XVR 40	238	9.37	95	3.74	6,1	13.4	4.000	2,950	01:11	3/4"	1 ½	
XVR 65	244	9.61	114	4.49	8,4	18.5	6.200	4,573	01:15	3/4"	1 ½	
XVR 70	302	11.89	128	5.04	11,4	25.1	6.800	5,016	01:17	3/4"	1 ½	
XVR 90	300	11.81	172	6.77	21,8	48.1	8.600	6,343	01:32	3/4"	1 ½'	
XVR D45 Étage 1 Étage 2	310	12.20	128	5.04	16,0	35.3	4.700 10.100	3,466 7,450	01:13,5 01:22	½" SW41	1 ½" 1 ½"	

Précision de répétition : ≤ 4%,en fonction du cas de vissage. Données techniques non garanties. *Données sans bras de réaction

^{**} Modèle XVK sans anti-retour

ACCESSOIRES POUR LES PRODUITS PLARAD

DOUILLES

Nos douilles offrent une solution pratique pour un serrage rapide et efficace dans différentes

Grâce à leur polyvalence et à leur facilité d'utilisation, elles constituent un accessoire indispensable et complètent parfaitement notre large gamme d'outils dynamométriques. Nos douilles sont compatibles avec tout les outils.

PDF SUR LE PRODUIT

CLÉ DYNAMOMÉTRIQUE

Nos clés dynamométriques sont des outils fiables pour le serrage contrôlé de vis et d'écrous.

Elles sont compatibles avec tous les multiplicateurs de couple manuels et répondent à vos exigences en matière d'ergonomie et de sécurité.

CONTRE CLÉ

Nos contre clés aident à garantir un serrage ou un desserrage sûr et efficace des vis, en particulier dans les endroits difficiles d'accès.

La contre clé est généralement utilisé pour empêcher la tête de la vis ou l'écrou de tourner pendant que la vis ou l'écrou est serré avec un couple élevé.

PDF SUR LE PRODUIT

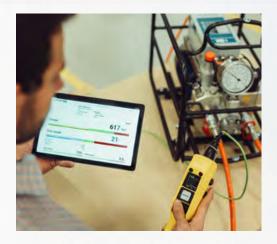
ÉLARGISSEZ VOS POSSIBILITÉS

SUSPENSION

Nos suspensions développées en interne sont extrêmement avantageuses pour les outils lourds, car elles équilibrent le poids et réduisent la charge pour l'utilisateur.

En maintenant un équilibre constant, elles permettent une manipulation sans effort et augmentent la sécurité, notamment lors de longues sessions de travail, en prévenant la fatigue.

PDF SUR LE PRODUIT


VALISE DE TRANSPORT / TROLLEY

Avec notre valise à outils, vous transportez outils et accessoires rapidement et sans effort, de manière ergonomique et en ménageant votre dos.

Vous avez toujours un accès rapide et facile à votre matériel.

PDF SUR LE PRODUIT

SOLUTIONS NUMÉRIQUES

Avec nos solutions de numérisation, nous révolutionnons le serrage au couple en trois étapes. Le niveau de base permet de réduire les coûts et de gagner du temps en connectant les outils dynamométriques à des appareils intelligents via une puce Wi-Fi et un logiciel de documentation innovant.

Le deuxième niveau permet une documentation et un contrôle précis du serrage via un réseau local. Le troisième niveau permet aux utilisateurs de gérer leur outil de manière autonome et à distance.

LIEN VERS LA BROCHURE NUMÉRIQUE

PLARAD SERVICE

Malgré une qualité maximale, nos produits peuvent tomber en panne un jour ou l'autre. Pour qu'ils soient réparés le plus rapidement possible, nos techniciens spécialistes sont prêts. Nous vous recommandons de nous faire contrôler vos outils de serrage et vos accessoires à intervalles réguliers.

Les appareils que nous entretenons reçoivent un nouveau certificat de contrôle d'usine. De cette manière, la qualité est suivie et assurée.

S'APPUIE

Acquérez et approfondissez vos connaissances dans l'utilisation et la maintenance de nos outils . Nous vous formons à l'utilisation de nos appareils et faisons de vous des spécialistes du serrage.

FORMATION DES UTILISATEURS

Transmission des bases théorique, des différentes méthodes de serrage, de la documentation de vos cas de serrage jusqu'aux thèmes relatifs à la sécurité.

FORMATION AU SERVICE

Évitez les défauts ou les pannes totales de vos outils grâce à une maintenance préventive.

(

SERVICE SUR PLACE

Avec notre service mobile, nous proposons également une intervention directement chez vous et sur le chantier. Nos collaborateurs qualifiés étalonnent et certifient vos outils dans les plus brefs délais et à la date de votre choix.

Notre véhicule climatisé garantit des conditions d'essai constantes avec une température de 20°C et une humidité de l'air de 50 à 60%.

AVANTAGES

- Mesures de couple jusqu'à 20.000 Nm dans un véhicule entièrement climatisé avec laboratoire d'essai
- Création de certificats pour les outils dynamométriques directement sur place
- Certification de groupes hydrauliques (étalonnage de manomètres)
- Contrôle DGUV V3 pour les appareils électriques
- Certification clé dynamométrique manuelle de 40 à 1.000 Nm
- ▶ Service sur site dans toute l'Europe
- Maintenance préventive
- Disponible sous forme de pack d'inspection et de maintenance à prix fixe

SERVICE DE LOCATION

Vous avez besoin d'un appareil rapidement? Ou vous avez un cas de serrage pour lequel un nouveau produit ne vaut pas la peine? Pas de problème! Grâce à sa large offre de location, Plarad propose la solution optimale pour chaque cas de serrage.

AVANTAGES

- Près de 2.000 appareils toujours disponibles dans la qualité habituelle de Plarad
- ▶ Louer rapidement et facilement
- Accords contractuels individuels
- ▶ Louer simplement les accessoires de l'outil
- Possibilité de location-vente
- ▶ Service de commande 24h/7

FABRICATION SPÉCIALE DE MACHINES DE SERRAGE.

ETUDE

PLARAD DÉVELOPPE ET FOURNIT DES MÉTHODES DE SERRAGES PERSONALISÉES POUR UN COUPLE À PARTIR DE 500NM.

La gamme de prestations s'étend des dispositifs auxiliaires complémentaires pour nos produits de série aux systèmes de serrage entièrement automatisés.

PRÉPARATION DU PROJET

- Concertation individuelle et personnelle en fonction du projet avec le client
- Élaboration de l'esquisse du projet, l'esquisse du projet regroupe toutes les informations pertinentes provenant d'e-mails, d'appels téléphoniques, de notes de discussion, etc.
- ▶ Rédaction du cahier des charges avec le client
- Sur la base du cahier des charges et de l'esquisse du projet, un cahier des charges est établi, qui décrit de manière plus concrète comment les exigences seront satisfaites
- Élaboration du concept et concertation avec le client en tenant compte des idées techniques et économiques du client
- Présentation du concept et discussion chez le client
- Élaboration d'une offre sur la base de la conceptualisation

MISSION

Plarad fixe des étapes judicieuses auxquelles le donneur d'ordre procède à une coordination détaillée avec la construction, la planification électrique et le développement de logiciels avec un gel de la conception.

Jalon 1 :
Construction de machines

 Jalon 2 :
 Concept de commande, armoire électrique, planification électrique, emballage

Jalon 3: Interface utilisateur, ergonomie, concept d'utilisation

Plarad a créé pour et avec Broetje Automation une plateforme mobile avec un Comau NJ-165-3.0 Bras robotisé et l'outillage final Plarad

Le système déplace des charges jusqu'à 165 kg, offre des mouvements omnidirectionnels jusqu'à 1,4 m/s et utilise des scanners laser pour un contrôle autonome. Des outils tels que des tendeurs hydrauliques ou des visseuses dynamométriques peuvent être facilement installés. La conception modulaire améliore les processus d'automatisation et sert de support à l'innovation.

Maschinenfabrik Wagner GmbH & Co. KG

Birrenbachshöhe 17 D-53804 Much // Germany info@plarad.de

Plarad France

2 Boulevard Sirius 72230 Moncé en belin info@plarad.fr

WWW.PLARAD.FR